53 research outputs found

    Issues in higher education policy : an update on higher education policy issues in 2004 in 11 Western countries

    Get PDF
    Higher education is a dynamic field. It is, however, also a field where changes don¿t take place overnight. This 2004 update report covers a period of 1.5 years, a period in which some earlier policy initiatives have been implemented and new ones have emerged. It is therefore not surprising to observe that many of the policy issues on the agenda in the previous Update Report (April, 2003) still are a topic of debate today.\ud The main part of the report are the descriptions of the current (2004) higher education debates and policy initiatives for each of the eleven IHEM countries, arranged in four themes educational and research infrastructure, finance, governance and quality. In conclusion, four `overarching¿ policy issues in contemporary European (and Australian) higher education are discussed. These issues are:\ud * The Bologna process and changing degree structures\ud * The changing organisation of research\ud * Financial accountability and responsibility\ud * Interactive governanc

    Deep Task-Based Analog-to-Digital Conversion

    Get PDF
    Analog-to-digital converters (ADCs) allow physical signals to be processed using digital hardware. Their conversion consists of two stages: Sampling, which maps a continuous-time signal into discrete-time, and quantization, i.e., representing the continuous-amplitude quantities using a finite number of bits. ADCs typically implement generic uniform conversion mappings that are ignorant of the task for which the signal is acquired, and can be costly when operating in high rates and fine resolutions. In this work we design task-oriented ADCs which learn from data how to map an analog signal into a digital representation such that the system task can be efficiently carried out. We propose a model for sampling and quantization that facilitates the learning of non-uniform mappings from data. Based on this learnable ADC mapping, we present a mechanism for optimizing a hybrid acquisition system comprised of analog combining, tunable ADCs with fixed rates, and digital processing, by jointly learning its components end-to-end. Then, we show how one can exploit the representation of hybrid acquisition systems as deep network to optimize the sampling rate and quantization rate given the task by utilizing Bayesian meta-learning techniques. We evaluate the proposed deep task-based ADC in two case studies: the first considers symbol detection in multi-antenna digital receivers, where multiple analog signals are simultaneously acquired in order to recover a set of discrete information symbols. The second application is the beamforming of analog channel data acquired in ultrasound imaging. Our numerical results demonstrate that the proposed approach achieves performance which is comparable to operating with high sampling rates and fine resolution quantization, while operating with reduced overall bit rate

    Deep Proximal Learning for High-Resolution Plane Wave Compounding

    Get PDF
    Plane Wave imaging enables many applications that require high frame rates, including localisation microscopy, shear wave elastography, and ultra-sensitive Doppler. To alleviate the degradation of image quality with respect to conventional focused acquisition, typically, multiple acquisitions from distinctly steered plane waves are coherently (i.e. after time-of-flight correction) compounded into a single image. This poses a trade-off between image quality and achievable frame-rate. To that end, we propose a new deep learning approach, derived by formulating plane wave compounding as a linear inverse problem, that attains high resolution, high-contrast images from just 3 plane wave transmissions. Our solution unfolds the iterations of a proximal gradient descent algorithm as a deep network, thereby directly exploiting the physics-based generative acquisition model into the neural network design. We train our network in a greedy manner, i.e. layer-by-layer, using a combination of pixel, temporal, and distribution (adversarial) losses to achieve both perceptual fidelity and data consistency. Through the strong model-based inductive bias, the proposed architecture outperforms several standard benchmark architectures in terms of image quality, with a low computational and memory footprint

    Ultrasound Signal Processing: From Models to Deep Learning

    Get PDF
    Medical ultrasound imaging relies heavily on high-quality signal processing algorithms to provide reliable and interpretable image reconstructions. Hand-crafted reconstruction methods, often based on approximations of the underlying measurement model, are useful in practice, but notoriously fall behind in terms of image quality. More sophisticated solutions, based on statistical modelling, careful parameter tuning, or through increased model complexity, can be sensitive to different environments. Recently, deep learning based methods have gained popularity, which are optimized in a data-driven fashion. These model-agnostic methods often rely on generic model structures, and require vast training data to converge to a robust solution. A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge. These model-based solutions yield high robustness, and require less trainable parameters and training data than conventional neural networks. In this work we provide an overview of these methods from the recent literature, and discuss a wide variety of ultrasound applications. We aim to inspire the reader to further research in this area, and to address the opportunities within the field of ultrasound signal processing. We conclude with a future perspective on these model-based deep learning techniques for medical ultrasound applications

    Epigenome-wide association study of incident type 2 diabetes:a meta-analysis of five prospective European cohorts

    Get PDF
    AIMS/HYPOTHESIS: Type 2 diabetes is a complex metabolic disease with increasing prevalence worldwide. Improving the prediction of incident type 2 diabetes using epigenetic markers could help tailor prevention efforts to those at the highest risk. The aim of this study was to identify predictive methylation markers for incident type 2 diabetes by combining epigenome-wide association study (EWAS) results from five prospective European cohorts.METHODS: We conducted a meta-analysis of EWASs in blood collected 7-10 years prior to type 2 diabetes diagnosis. DNA methylation was measured with Illumina Infinium Methylation arrays. A total of 1250 cases and 1950 controls from five longitudinal cohorts were included: Doetinchem, ESTHER, KORA1, KORA2 and EPIC-Norfolk. Associations between DNA methylation and incident type 2 diabetes were examined using robust linear regression with adjustment for potential confounders. Inverse-variance fixed-effects meta-analysis of cohort-level individual CpG EWAS estimates was performed using METAL. The methylGSA R package was used for gene set enrichment analysis. Confirmation of genome-wide significant CpG sites was performed in a cohort of Indian Asians (LOLIPOP, UK).RESULTS: The meta-analysis identified 76 CpG sites that were differentially methylated in individuals with incident type 2 diabetes compared with control individuals (p values &lt;1.1 × 10-7). Sixty-four out of 76 (84.2%) CpG sites were confirmed by directionally consistent effects and p values &lt;0.05 in an independent cohort of Indian Asians. However, on adjustment for baseline BMI only four CpG sites remained genome-wide significant, and addition of the 76 CpG methylation risk score to a prediction model including established predictors of type 2 diabetes (age, sex, BMI and HbA1c) showed no improvement (AUC 0.757 vs 0.753). Gene set enrichment analysis of the full epigenome-wide results clearly showed enrichment of processes linked to insulin signalling, lipid homeostasis and inflammation.CONCLUSIONS/INTERPRETATION: By combining results from five European cohorts, and thus significantly increasing study sample size, we identified 76 CpG sites associated with incident type 2 diabetes. Replication of 64 CpGs in an independent cohort of Indian Asians suggests that the association between DNA methylation levels and incident type 2 diabetes is robust and independent of ethnicity. Our data also indicate that BMI partly explains the association between DNA methylation and incident type 2 diabetes. Further studies are required to elucidate the underlying biological mechanisms and to determine potential causal roles of the differentially methylated CpG sites in type 2 diabetes development.</p

    Universal scaling behavior of non-equilibrium phase transitions

    Full text link
    One of the most impressive features of continuous phase transitions is the concept of universality, that allows to group the great variety of different critical phenomena into a small number of universality classes. All systems belonging to a given universality class have the same critical exponents, and certain scaling functions become identical near the critical point. It is the aim of this work to demonstrate the usefulness of universal scaling functions for the analysis of non-equilibrium phase transitions. In order to limit the coverage of this article, we focus on a particular class of non-equilibrium critical phenomena, the so-called absorbing phase transitions. These phase transitions arise from a competition of opposing processes, usually creation and annihilation processes. The transition point separates an active phase and an absorbing phase in which the dynamics is frozen. A systematic analysis of universal scaling functions of absorbing phase transitions is presented, including static, dynamical, and finite-size scaling measurements. As a result a picture gallery of universal scaling functions is presented which allows to identify and to distinguish universality classes.Comment: review article, 160 pages, 60 figures include

    Variation in Structure and Process of Care in Traumatic Brain Injury: Provider Profiles of European Neurotrauma Centers Participating in the CENTER-TBI Study.

    Get PDF
    INTRODUCTION: The strength of evidence underpinning care and treatment recommendations in traumatic brain injury (TBI) is low. Comparative effectiveness research (CER) has been proposed as a framework to provide evidence for optimal care for TBI patients. The first step in CER is to map the existing variation. The aim of current study is to quantify variation in general structural and process characteristics among centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. METHODS: We designed a set of 11 provider profiling questionnaires with 321 questions about various aspects of TBI care, chosen based on literature and expert opinion. After pilot testing, questionnaires were disseminated to 71 centers from 20 countries participating in the CENTER-TBI study. Reliability of questionnaires was estimated by calculating a concordance rate among 5% duplicate questions. RESULTS: All 71 centers completed the questionnaires. Median concordance rate among duplicate questions was 0.85. The majority of centers were academic hospitals (n = 65, 92%), designated as a level I trauma center (n = 48, 68%) and situated in an urban location (n = 70, 99%). The availability of facilities for neuro-trauma care varied across centers; e.g. 40 (57%) had a dedicated neuro-intensive care unit (ICU), 36 (51%) had an in-hospital rehabilitation unit and the organization of the ICU was closed in 64% (n = 45) of the centers. In addition, we found wide variation in processes of care, such as the ICU admission policy and intracranial pressure monitoring policy among centers. CONCLUSION: Even among high-volume, specialized neurotrauma centers there is substantial variation in structures and processes of TBI care. This variation provides an opportunity to study effectiveness of specific aspects of TBI care and to identify best practices with CER approaches

    Variation in general supportive and preventive intensive care management of traumatic brain injury: a survey in 66 neurotrauma centers participating in the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study

    Get PDF
    Abstract Background General supportive and preventive measures in the intensive care management of traumatic brain injury (TBI) aim to prevent or limit secondary brain injury and optimize recovery. The aim of this survey was to assess and quantify variation in perceptions on intensive care unit (ICU) management of patients with TBI in European neurotrauma centers. Methods We performed a survey as part of the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) study. We analyzed 23 questions focused on: 1) circulatory and respiratory management; 2) fever control; 3) use of corticosteroids; 4) nutrition and glucose management; and 5) seizure prophylaxis and treatment. Results The survey was completed predominantly by intensivists (n = 33, 50%) and neurosurgeons (n = 23, 35%) from 66 centers (97% response rate). The most common cerebral perfusion pressure (CPP) target was > 60 mmHg (n = 39, 60%) and/or an individualized target (n = 25, 38%). To support CPP, crystalloid fluid loading (n = 60, 91%) was generally preferred over albumin (n = 15, 23%), and vasopressors (n = 63, 96%) over inotropes (n = 29, 44%). The most commonly reported target of partial pressure of carbon dioxide in arterial blood (PaCO2) was 36–40 mmHg (4.8–5.3 kPa) in case of controlled intracranial pressure (ICP) < 20 mmHg (n = 45, 69%) and PaCO2 target of 30–35 mmHg (4–4.7 kPa) in case of raised ICP (n = 40, 62%). Almost all respondents indicated to generally treat fever (n = 65, 98%) with paracetamol (n = 61, 92%) and/or external cooling (n = 49, 74%). Conventional glucose management (n = 43, 66%) was preferred over tight glycemic control (n = 18, 28%). More than half of the respondents indicated to aim for full caloric replacement within 7 days (n = 43, 66%) using enteral nutrition (n = 60, 92%). Indications for and duration of seizure prophylaxis varied, and levetiracetam was mostly reported as the agent of choice for both seizure prophylaxis (n = 32, 49%) and treatment (n = 40, 61%). Conclusions Practice preferences vary substantially regarding general supportive and preventive measures in TBI patients at ICUs of European neurotrauma centers. These results provide an opportunity for future comparative effectiveness research, since a more evidence-based uniformity in good practices in general ICU management could have a major impact on TBI outcome
    corecore